proof by contradiction - ορισμός. Τι είναι το proof by contradiction
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι proof by contradiction - ορισμός


Proof by contradiction         
FORM OF INDIRECT PROOF THAT ESTABLISHES THE TRUTH OR VALIDITY OF A PROPOSITION
Indirect proof; Prove by contradiction; Proof by Contradiction; Proofs by contradiction; Refutation by contradiction
In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by assuming the opposite, and reductio ad impossibile.
Proof by intimidation         
METHOD OF CONVINCING SOMEONE BY USING JARGON OR CLAIMING IT AS CLEAR
Proof by verbosity; Argumentum verbosium; Proof by Intimidation; Argument by verbosity; Left as an exercise for the reader; The proof is left to the reader
Proof by intimidation (or argumentum verbosum) is a jocular phrase used mainly in mathematics to refer to a specific form of hand-waving, whereby one attempts to advance an argument by marking it as obvious or trivial, or by giving an argument loaded with jargon and obscure results. It attempts to intimidate the audience into simply accepting the result without evidence, by appealing to their ignorance and lack of understanding.
Mathematical proof         
RIGOROUS DEMONSTRATION THAT A MATHEMATICAL STATEMENT FOLLOWS FROM ITS PREMISES
TheoremProving; Proof (mathematics); Proof (math); Mathematical Proof; Proving (math); Maths proofs; Mathematical proofs; Proof techniques; Proof Techniques; Demonstration (proof); Derivation (mathematical logic); Methods of proof; Proof method; Skipped step; Essential step; Theorem-proving; Two-column proof; Mathing; Types of proof; Math proof; History of mathematical proof; Mathematical derivation; Geometric proof; Geometrical proof
A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference.